
Windows Disk Drive Recovery with Ada95 –
An Application Note

Karl Nyberg

Grebyn Corporation

P. O. Box 47

Sterling, VA 20167-0047

1-703-406-4161
karl@nyberg.net

ABSTRACT
This note is a little documentary case of using Ada95 to develop a
small utility to recover data from a FAT (File Allocation Table)
formatted file system on a Windows 98 disk drive.

1. INTRODUCTION
A friend of mine mentioned that he had been installing an
additional disk drive on his computer and in the process had
somehow lost everything he had on his original disk. (I later
found that a worm targeting his firewall security software,
BlackICE, may have actually been responsible for the damage.) I
offered to take a look at it and see if I could recover any data off
of the drive, having had a modicum of success in doing similar
things before, particularly with Solaris drives. In the process, I
created an Ada interface to the underlying format of the file
system and herein describe that format in Ada95 terms and its use
in recovering the data.

2. Window 98 File System - FAT32
The drive in question was formatted using Microsoft FAT32 (File
Allocation Table - 32 bits, there are also 12 bit and 16 bit
versions, where the number refers to the size of the table),
formally documented in the "Microsoft Extensible Firmware
Initiative FAT32 File System Specification" [FAT32]. The
remainder of this section describes that file format.

A FAT file system consists of four regions:

1. Reserved Region (Boot Sector)
2. File Allocation Table Region
3. Root Directory Region (not present on FAT32)
4. Directory and File Data Region

2.1 Boot Sector
The boot sector is the first sector of data on the disk. Generally,
this is the first 512 bytes (stored in BPB_BytsPerSec, a variable
name, as all shown below, chosen to mimic the specification),
but, we are cautioned in the documentation, this isn't necessarily
so...

The various fields in the Boot_Sector record shown below (types
are System.Unsigned_Types from GCC 3.4 20031210) have to do
with such issues as the drive's geometric characteristics as well as
the type of file system stored on the drive. Separate structures

are stored on drives formatted for other formats (FAT12 and
FAT16), but were not defined and are not described here, as they
were not of interest.

The data on the drive being recovered in the boot sector had been
damaged in some manner so that this information was useless
during recovery. Data from other drives was read to understand
how the data fit together, what data was actually necessary in
order to recover data from the drive and to confirm that the
algorithm worked on valid data.

type Boot_Sector is record
 BS_JmpBoot : String (1 .. 3);
 BS_OEMName : String (1 .. 8);
 BPB_BytsPerSec : Short_Unsigned := 0;
 BPB_SecPerClus : Short_Short_Integer := 0;
 BPB_ResvdSecCnt : Short_Unsigned := 0;
 BPB_NumFATs : Short_Short_Integer := 0;
 BPB_RootEntCnt : Short_Unsigned := 0;
 BPB_TotSec16 : Short_Unsigned := 0;
 BPB_Media : Short_Short_Integer := 0;
 BPB_FATSz16 : Short_Unsigned := 0;
 BPB_SecPerTrk : Short_Unsigned := 0;
 BPB_NumHeads : Short_Unsigned := 0;
 BPB_HiddSec : Unsigned := 0;
 BPB_TotSec32 : Unsigned := 0;
 BPB_FATSz32 : Unsigned := 0;
 BPB_ExtFlags : Short_Unsigned := 0;
 BPB_FSVer : Short_Unsigned := 0;
 BPB_RootClus : Unsigned := 0;
 BPB_FSInfo : Short_Unsigned := 0;
 BPB_BkBootSec : Short_Unsigned := 0;
 BPB_Reserved : String (1 .. 12);
 BS_DrvNum : Short_Short_Integer := 0;
 BS_Reserved1 : Short_Short_Integer := 0;
 BS_BootSig : Short_Short_Integer := 0;
 BS_VolID : Unsigned := 0;
 BS_VolLab : String (1 .. 11);
 BS_FilSysType : String (1 .. 8);
end record;

2.2 File Allocation Table Region
The File Allocation Table (FAT) Region is a number of entries
that indicate what locations on the disk contain data for individual
items (be they directories or files). Each entry in the FAT
contains either the location of the following FAT entry or a value
(mod 2 ** 28 = 16#FFFFFFF# or 16#FFFFFF8#) that indicates
this entry is the final one for this data item (directory or file).
Each data item referred to contains one cluster's worth of data.

Generally, for a defragmented (optimized layout for sequential
access, not necessarily for disk geometry access) file system,

Ada Letters June 2005 42 Volume XXV, Number 2

entries will be sequential - a data item stored at location 10 .. 12
will have FAT entries that appear as:

FAT Location Value
10 11
11 12
12 16#FFFFFFF#

There are two copies of the FAT stored on the disk, one following
the other. While the documentation doesn't say so, it appeared
from analysis that the entries for the two copies are not identical.
What appears to be the case is that when the two entries differ,
one will have the value 16#76F676F6# and the other will have the
correct value. Since the FAT was being used as a read-only
mechanism to restore the data here rather than as a general-
purpose file system, this issue wasn't investigated further.

2.3 Root Directory Region (not on FAT32)

2.4 Directory and File Data Region
The remainder of the disk contains the data for the directory
entries and the actual contents of files stored in the directories.

2.4.1 Directory Structure
The directory structure consists of two types of entries - short
names (sometimes also known as the 8.3 filenames, from the
number of characters available for the name and the extension)
and long filenames. The file system is designed so that all names
are unique with short filenames, even though long filenames may
not be unique to eight characters with the same extension.

2.4.1.1 Short File Names - 8.3
For the current application, which was merely restoring the files,
only the name, location of the first cluster (high and low bits) and
the file size were utilized.

type Directory is record
 DIR_Name : String (1 .. 11);
 DIR_Attr : Short_Short_Integer := 0;
 DIR_NTRes : Short_Short_Integer := 0;
 DIR_CrtTimeTenth : Short_Short_Unsigned := 0;
 DIR_CrtTime : Short_Unsigned := 0;
 DIR_CrtDate : Short_Unsigned := 0;
 DIR_LstAccDate : Short_Unsigned := 0;
 DIR_FstClusHI : Short_Unsigned := 0;
 DIR_WrtTime : Short_Unsigned := 0;
 DIR_WrtDate : Short_Unsigned := 0;
 DIR_FstClusLO : Short_Unsigned := 0;
 DIR_FileSize : Unsigned := 0;
end record;

2.4.1.2 Long File Names
For directories (or files) with long filenames, these names are
stored using multiple entries (all directory filename entries are 32
bytes long). The individual components of the filename (Name1,
Name2, and Name3) are catenated together in sequential entries
for each occurrence to make up the long filename.

type Long_Directory is record
 LDIR_Ord : Short_Short_Integer := 0;
 LDIR_Name1 : String (1 .. 10);
 LDIR_Attr : Short_Short_Integer := 0;
 LDIR_Type : Short_Short_Integer := 0;
 LDIR_Chksum : Short_Short_Integer := 0;
 LDIR_Name2 : String (1 .. 12);

 LDIR_FstClusLO : Short_Unsigned := 0;
 LDIR_Name3 : String (1 .. 4);
end record;

2.4.2 File Contents
Once the file names were determined, the corresponding data for
the file was read. Again, this was performed in 8K data sectors,
with the final write being a partial sector to complete the size of
the file’s data.

3. Program Execution
The utility was developed as two passes - the first one that simply
listed the directories and files contained and the second one that
actually recovered the data in the files. This was done as much
for the iterative learning process as anything.

Both passes perform the same walking of the directory structure.
In the first pass, a script was created with directory names were
printed with "mkdir" commands and file names were printed with
"touch". This script could be executed to create the appropriate
populated directory tree for the second pass. (It was also useful
during development, to confirm directory and file names,
especially with embedded spaces and special characters.)

During the second pass, only the leaves of the tree (the files)
received any additional processing. The file size was obtained
from the directory record and the appropriate number of bytes
copied.

4. Results

4.1 Development Approach
The development approach was essentially iterative – a little
requirements analysis, a little design, a little coding, a little
testing. Software for the first pass (parsing the directory
structures) was developed until a full understanding of the format
and contents of the drive were completed

4.2 Timing
The original disk drive tested was a 14GB drive, whose contents
were copied from the existing drive to a much larger drive using
the UNIX “dd” command. This was done so as to use the original
drive as little as possible in the event that some parts of the drives
components were failing and might not last long. Execution of
the listing phase of the program to determine the directory
structures and file names took about one minute. The file
extraction phase required an additional twenty minutes. (All
times were run on a Dell PowerEdge 400SC with a 3.2GHz
Pentium processor under RedHat Linux 9.0 running kernel 2.4.20-
8). As these times were considered "reasonable", no additional
effort in improving the performance of the program was
undertaken. For comparison, images from other file systems of
approximately 2GB ran in 20 seconds for the listing phase and 3 –
4 minutes for the extraction phase. Times were somewhat
dependent upon the mix between the number of directories and
individual files contained within the images.

4.3 Effectiveness
Many times I’ve heard people say that they don’t choose Ada
because they’re looking for something that will let them get their

Ada Letters June 2005 43 Volume XXV, Number 2

little project done quickly and don’t want to have the “overhead”
that Ada requires. This project took a couple weeks of occasional
evenings to generate about 1000 lines (including blanks,
comments, etc.). Mind you, there’s no 2167A documentation,
users guide, man pages or attempts to meet or maintain any SEI
Level N anything. It just worked.

5. Additional / Future Work
There are a number of areas where additional work could be done
to extend the usefulness of this effort.

File timestamps (creation time / date, write time / date, last access
date) were not used when writing the data. Doing so wasn't
considered important here, since recovery of content was the
issue. Adding such features would be straightforward, possibly
requiring an interface to the underlying operating system's file
structures and system calls. With such an interface, it might even
be reasonable to expect to reduce the whole process to a single
pass.

Support for other FAT types, namely FAT12 and FAT16, were
not implemented because they weren't of current interest. These
could easily enough be added with variant records within the
Boot_Sector record.

Ada's Direct_IO package was used to read in the (8K byte)
sectors. However, as the implementation used was limited in the
file size, a "virtual" implementation was developed. This virtual

file system split the recovered image into individual files of 500
megabytes (again, using the UNIX "dd" command) and creating
an interface that selected the appropriate file and set the index
accordingly. Bytes were then copied from these files into a
temporary file for use. Another option would have been to
modify the compiler to permit larger files with Direct_IO.

Some sort of interactive recovery program that would allow
walking the directory tree and selecting files or one that would
allow the specification of individual files or directories to be
selected on the command line could also be added to the utility.

It might have been possible to recreate the information in the boot
sector and try to get the drive to boot by itself. There is usually
an additional copy stored at a secondary location in the disk drive,
but in the case of interest here, the backup boot sector had also
been overwritten. However, by this time my friend had already
reloaded his operating system on another disk drive and was only
interested in a few pieces of data.

The software is available at http://www.grebyn.com/software for
those interested in using or modifying it.

6. REFERENCES
[1] http://www.microsoft.com/hwdev/download/hardware/fatgen

103.pdf

Ada Letters June 2005 44 Volume XXV, Number 2

