
Using ASIS to Generate C++ Bindings
Howard Ausden

Lockheed Martin TSS
9211 Corporate Blvd.
Rockville, MD 20850

1-301-640-2099

Howard.Ausden@lmco.com

Karl Nyberg
Grebyn Corporation

P. O. Box 47
Sterling, VA 20167-0047

1-703-406-4161

karl@nyberg.net

ABSTRACT
In this paper, we describe an approach to automatically creating
C++ bindings to Ada libraries utilizing capabilities of the Ada
Semantic Interface Specification (ASIS). We discuss language
mapping issues and provide examples of usage of ASIS features
during the implementation of a binding tool.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering and reengineering. F.3.2
[Semantics of Programming Languages]: Program analysis.
I.2.2 [Automatic Programming]: Program synthesis; program
transformation.

General Terms: Languages.

Keywords: Program Transformation, Cross-Language
Libraries, Multiple Language Interfaces.

1. INTRODUCTION
The En Route Automation Modernization (ERAM) project is
being undertaken by Lockheed Martin under the direction of the
Federal Aviation Administration (FAA). ERAM will provide
air traffic management automation services for the En
Route domain at the twenty continental United States Air
Route Traffic Control Centers (ARTCC). The software runs
on International Business Machines (IBM) computers running the
AIX operating system. The system, derived in part from an earlier
project, the User Request Evaluation Tool (URET) has primarily
been implemented in Ada, with additional client processes
(primarily for display components) now being implemented in
C++. Providing access to the underlying library services
implemented in Ada for clients implemented in C++ provided the
impetus for this effort. Automating the creation of language
bindings became a consideration due to the quantity and fluidity
of the underlying libraries during development. Utilizing ASIS as
an infrastructure to support the development of a program
transformation tool provided an opportunity to do that

automation. (Because of the volume of already extant code,
injection of a data driven approach, such as CORBA (Common
Object Request Broker Architecture) [1] was not feasible to apply
at this stage of the project’s lifecycle.)

Generally, Ada programmers find themselves in the position of
having to interface to libraries written in other languages, such as
C, C++, FORTRAN and Java. In those instances scripts and / or
tools (e.g., cbind [2]) are created to automate portions of the
parsing of the library specifications, such as are contained in
header files or intermediate object files [3]. In some cases, it is
even possible to use language development tools for those
languages, such as lex and yacc / bison that are designed to parse
library specifications. The ASIS approach is different in that
ASIS operates on an abstract view of the internal representation
(as created by the compiler being used) of the program under
analysis. This approach relieves the tool developer of any
requirement to create a parser for the underlying software and
allows attention to be focused on the generation of the library
bindings rather than upon the creation of supporting technology
for data access.

In the remainder of this paper, we discuss these language
differences (at a high level, with a partial mapping between the
languages), followed by a brief overview of ASIS and the
implementation of the binding tool with examples of how ASIS
capabilities have been used.

2. LANGUAGE COMPARISON
To a great degree Ada and C++ are comparable languages. The
latest generation of Ada (Ada95) added features that made the
language much more object oriented, and, as a result, allows easy
mapping of language features into similar features in C++. In
Table 1 we present some of the common features (additional
detailed feature analysis and comparison can be seen in [4], [5]
and [6]). Following the table we discuss how the mapping of
some of these features is implemented.

Table 1. Comparison of Language Features

Feature Ada C++
Packaging /
Name Space

Package Namespace

Complex Typing Private, abstract,
tagged

Classes

Exceptions Language, library
and user defined

Library and user
defined

Functions /
procedures

Functions /
procedures

Methods (as part of a
class), functions and
procedures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGAda’05, November 13–17, 2005, Atlanta, Georgia, USA.
Copyright 2005 ACM 1-59593-185-6/05/0011...$5.00.

23

2.1 Packaging / Name Space
Both Ada and C++ contain features for collecting items of a
common nature in a single unit for managing the name space.
Within Ada this feature is the package; with C++, the namespace.
Both languages contain a mechanism for extending this feature
through a “child” approach that allows the children to “inherit”
from the parent entity.
As the requirement for developing a C++ interface was known
from the inception of the project, the resulting Ada was designed
with this in mind and was developed in a highly object-oriented
approach. While no formal style guide or other published
development approach was used to ensure the seamless
integration of a C++ interface, the simplicity of achieving the
result cannot be attributed to simple serendipity.
There were several instances where namespace issues were
slightly more complicated than an obvious approach might expect.
For example, within a C++ namespace, all enumeration literals
must be unique, whereas within in Ada package, all enumeration
literals must be unique within a type. For example, where Ada
would permit the following enumeration declarations in a
package:

type Stop_Light is (Red, Yellow, Green);

type Rainbow is (Red, Orange, Yellow,

 Green, Blue, Indigo,

 Violet);

the generation of the obviously equivalent C++ enumeration
literals:

enum stop_light (RED, YELLOW, GREEN);

enum rainbow (RED, ORANGE, YELLOW, GREEN,

 BLUE, INDIGO, VIOLET);

will result in the BOLDED literals being flagged as duplicates by
the C++ compiler. Several options existed for making the
enumeration literals unique – mangling the literal, changing case,
pre- or appending additional text or mapping to some other
uniquely generated symbol. However, since this is text that the
C++ client application programmer uses, it was felt that such
changes should maintain meaningful names for the literals. Hence
the Ada programmers were encouraged to change the names to
ensure uniqueness and yet maintain meaning. This had the side
benefit of keeping the literals the same in both languages as well.
The above example could be solved by simply making the
following change to the Ada enumeration and continuing to use
the obvious mapping to C++ enumerations.

type Stop_Light is (Red_Light,

 Green_Light,

 Yellow_Light);

Additionally, at link time, it must be possible to uniquely resolve
all names in use. When specifying the name in each language for
crossing the language boundary interface (pragma export in

Ada and extern in C++), the names must be globally unique.
Prepending a version of the package / namespace name will
ensure that no cross-package clashes exit. Within an individual
package / namespace, conflicting link names due to overloaded
functions / procedures / methods with different parameter profiles
were simply disambiguated by appending sequentially increasing
number suffixes (“_01”, “_02”, etc.) as needed. This approach
was considered acceptable because none of the names were visible
to either the client application programmer or the original library
implementer, as the generated symbols were wholly contained
within the wrapper routines.

2.2 Type Mapping
There are essentially three groups of data types that need to be
mapped between the two languages. These are the “intrinsic”
types (integer, boolean, strings, etc.), the “composite / structured”
types (arrays / vectors, records / structs) and the “abstract” types
(not only actual abstract types, but also variant records,
discriminant, tagged and private types and classes).
The implementation of the type mapping can be thought of in two
aspects – the specification and the implementation. The
implementation is commonly attempted through the use of
representation specifications on the Ada types to ensure that the
data layout in the Ada implementation matches that of the C++
compiler being utilized on the project. While this approach
worked effectively during the early use of Ada in creating
interfaces to existing straightforward C libraries, the
complications of discriminant records, variant types, union
structures, arrays and vectors, null termination requirements of
strings in C++ and the whole collection of issues associated with
tagged and private types / classes has led us to consider alternative
approaches to implementing the exchange of data across the
language boundary. Additional project requirements for data,
such as in simulations, messaging and logging during the
operation of the system has provided the opportunity to consider
additional formats. These implementation issues are described in
greater detail in later sections.

2.2.1 Intrinsic Types
The intrinsic types match quite directly between the languages.
However the semantics of some of the types such as integer
subtypes only become evident at the time of the implementation
of the language boundary. For example, where an Ada integer
subtype such as:

subtype Teenage_Years is

 integer range 13 .. 19;

provides bounds information that the Ada compiler enforces on
access and assignment, the corresponding C++ declaration:

typedef int teenage_years;

has no attendant range checking. Thus, to ensure that an object,
or component of an object that is passed from C++ to Ada is
within the range of the declared subtype) requires either checking
the range of the object within C++ before crossing the language
boundary or checking the ’Valid attribute on the Ada side.

24

Using the principle of least surprise, checking the values in the
C++ side of the binding before crossing the language boundary
has been implemented.

2.2.2 Composite / Structured Types
The composite types, records and arrays, while also mapping quite
well directly at the language level, suffer from even more
complication during the implementation. Within Ada, arrays with
non-static bounds are often maintained in memory preceded by
“dope vectors” that contain information on the bounds of the
array; within C++, no such information is carried along. This
required a little more effort during the transmission of objects
between the two languages (see below), but was otherwise
straightforward.

2.2.3 Abstract Types
The “abstract” types in Ada consist of those for which either
access to objects of the type has been limited (e.g., private types)
to the functions and / or procedures provided or for which
extensibility (inheritance) of the object is desired. These are
mapped into C++ classes.
The mapping of variant records provided an engineering tradeoff.
A case could be made to either map to a C++ union struct or to a
class (both mappings were, in fact, implemented). As the C++
programmers on the project felt that the class approach was more
natural, that selection was made.

2.3 Additional Language Boundary Issues
The primary focus of the foregoing discussion has been the
creation of the C++ header file (the *.h file). This section
discusses the issues associated with crossing the language
boundary in terms of both the mapping of the functions /
procedures and methods and the data and exceptions.
In order to isolate the C++ binding interface from the existing Ada
packages, child packages were created to contain all the necessary
interface information. Procedures were created that wrapped
original procedures with an additional exception integer variable
(to represent any exception generated by the original procedure)
and those derived from functions had both an exception integer
added as well as an OUT variable of the return type of the original
function. Calls to the original function / procedure were further
wrapped in an exception handler with an others clause to ensure
no Ada exception would propagate across the language boundary.
(An alternative, compiler-dependent, solution that cleared the
execution stack and replaced it with C++ exception material was
considered but not selected because of both its compiler
dependency and a requirement to register all exceptions in
advance, both cumbersome and a potentially error prone
situation.)
The exception passing mechanism effectively operates as a UNIX
“errno” feature, passing back an integer indicating the “success”
or “failure” of the underlying operation. This integer is used at
the language boundary to indicate the exception that has been
raised (on the Ada side) and which should be thrown (on the C++
side). Each possible exception declared in the Ada package as
well as each predefined and “with’ed” package exceptions are
mapped to a positive integer; unspecified exceptions (caught by a
where clause on the Ada side) are mapped to a negative number.

Such an approach provides more than may actually be necessary
so when the final implementation (the package bodies) is
available for analysis and determination, a reduction in the
number of actual exceptions being raised may be possible.

2.4 Data “Conversion”
As mentioned earlier, the selection of a data passing mechanism
was motivated in part by a requirement for data logging (for
checkpointing, error logs, etc.) in the operational system. Other
components of the system utilize a logging tool, which places
restrictions on the components of the type that may be “tooled”
with respect to use of this tool. Such “toolable” types may not
include any components that contain variant records, discriminant
types, tagged types, etc. Such logs and the records contained in
them also suffered from lack of versioning control as changes to
the underlying types were not always kept synchronized because
of the manual effort required to update interface routines for the
tool when type changes were made.
Utilizing ASIS to automate the generation of the interfaces makes
it possible to both maintain versioning control and to overcome
the limitations of the tooling and logging tools. It is possible to
automatically create routines for generating and parsing data
objects in either language into or out of a format that the other
language can generate or use. Both binary (for internal use and
performance) and readable ASCII (in an XML like or data
“dump” style format) could be supported. At the moment, the
only implementation is with the internal Collection mechanism
mentioned below.

3. ASIS OVERVIEW
ASIS was developed as an international “secondary” standard
(dependent upon the Ada standard):

The Ada Semantic Interface Specification (ASIS) is an
interface between an Ada environment as defined by
ISO/IEC 8652 (the Ada Reference Manual) and any tool
requiring information from this environment. An Ada
environment includes valuable semantic and syntactic
information. ASIS is an open and published callable
interface which gives CASE tool and application
developers access to this information. ASIS has been
designed to be independent of underlying Ada
environment implementations, thus supporting
portability of software engineering tools while relieving
tool developers from having to understand the
complexities of an Ada environment's proprietary
internal representation. [7]

ASIS is implemented as a set of public package specifications (an
Application Program Interface, or API with compiler dependent
bodies for individual platforms:

The ASIS interface consists of a set of types, subtypes,
and subprograms which provide a capability to query
the Ada compilation environment for syntactic and
semantic information. Package Asis is the root of the
ASIS interface. It contains common types used
throughout the ASIS interface. Important common
abstractions include Context, Element, and
Compilation_Unit. Type Context helps identify the
compilation units considered to be analyzable as part of
the Ada compilation environment. Type Element is an

25

abstraction of entities within a logical Ada syntax tree.
Type Compilation_Unit is an abstraction for Ada
compilation units. In addition, there are two sets of
enumeration types called Element Kinds and Unit
Kinds. Element Kinds are a set of enumeration types
providing a mapping to the Ada syntax. Unit Kinds are
a set of enumeration types describing the various kinds
of compilation units. [8]

The basic feature that ASIS provides is the ability to abstractly
access the pre-digested compiler internal information (similar to
an Abstract Syntax Tree) on a program under consideration. An
ASIS application can then be thought of as a report generator
written against data in a database.

The primary ASIS interfaces used in this project include:

• Context – the basic program library containing the
compilation units.

• Compilation Units – package specifications, containing
context clauses (“with”s) and various declarations
(types, functions, procedures).

• Declarations – functions and procedures to obtain types
and parameter profile information.

• Definitions – functions and procedures to query type
declarations for detailed information.

Further details on the development of ASIS and tutorials can be
found at the ACM’s SIGAda web site [9].

Snippets and discussion of ASIS-related code relevant to the
binding generator will be interspersed throughout the presentation
of the binding process in the remainder of this paper. (In some of
these instances, the code has been stripped to only show the
relevant portion of ASIS being utilized.)

4. BINDING TOOL

4.1 OVERVIEW
The creation of a C++ binding to Ada libraries breaks down
naturally into several reasonably managed areas. These include
the creation of the interface specifications (in C++, the *.h header
files corresponding to the Ada specification files, commonly the
*.ads files) and the implementation of such specification as well
as a “wrapper” in both C++ containing extern declarations
corresponding to the interface specifications that implements the
calls to the underlying Ada with corresponding pragma
export declarations.
In this effort, the development approach has called for the release
of a compilable Application Program Interface (API) in both Ada
and C++ with dummy “stub” implementations to allow client
programmers to begin to compile and link their applications prior
to the full implementation of the underlying libraries. In order to
meet this requirement and to permit a compiler-independent
approach to cross-language exception management, this
implementation is divided into a C++ implementation wrapper
and an Ada implementation wrapper (on “top” of the existing Ada
packages). Thus, for any existing individual Ada package foo.ads
(and potentially foo.adb), there will be generated six
corresponding files:

1. foo.h – the C++ header
2. foo.cpp – the C++ implementation
3. foo-wrap.ads – the Ada wrapper interface specification
4. foo-wrap.adb – the Ada wrapper implementation
5. foo-wrap.h – the C++ wrapper interface specification
6. foo-wrap.cpp – the C++ wrapper implementation

This approach has the advantage of keeping the existing Ada
library uncluttered by placing all information associated with the
C++ binding in separate files. Thus, client applications
continuing to be developed in Ada will not have any of the
additional material required for the C++ binding included.
In the creation of the header files, some consideration was given
as to whether to attempt to provide representation specifications
(see LRM (13)) as a means of passing data between calls in the
two languages. However, the project had already defined a
separate Collection package / namespace, implemented in each
language, for inter-language data exchange. It was decided to use
this existing functionality rather than invent something new. Use
of such a mechanism requires eight additional files for the
packaging of the data and specification of the interfaces for both
the “tooling” approach and the “serialization” approach:

7. foo-tool.h – the C++ header
8. foo-tool.cpp – the C++ implementation
9. foo-tool.ads – the Ada specification
10. foo-tool.adb – the Ada implementation
11. foo-serial.h – the C++ header
12. foo-serial.cpp – the C++ implementation
13. foo-serial.ads – the Ada specification
14. foo-serial.adb – the Ada implementation

Now, as should be quite obvious, the explosion in the number of
files necessary to implement an interface in this manner could be
quite a concern, especially as the number of packages and
libraries increases. It should be noted, however, that the only file
that is of concern to the C++ programmer is in fact the original
foo.h file, as all the other files represent material that is “under the
hood” of the binding. It might be possible, even desirable, to
coalesce some of the other files together to reduce the quantity,
but for simplicity of development of the binding generator by
separation of concerns, this has not yet been attempted.
In the creation of a secondary language binding, you must always
address the issue of the level of the binding: whether to stay true
to the original language definition or whether to allow the
programmer to operate in the natural development environment of
the derived language. We have striven to allow the programmer
to operate in the natural development environment of the derived
language (C++). This decision implies that we draw a “line in the
sand” when requiring language-specific libraries that is closest to
the language of the derived language, rather than of the original
language and, where necessary, do low level manipulation to
achieve these more native types. For example, we defer to the
C++ string and ctype libraries rather than require the C++

26

programmer to use bindings to Ada.Strings or
Ada.Characters.Handling packages.
In a similar vein, other components within ERAM also have the
requirement to provide both Ada and C++ interfaces. In those
cases, where we might have created an automated interface to the
underlying Ada, we have deferred to any available C++ interfaces
where they already existed. In some cases, these are bindings to
underlying Ada libraries and in others, actual complete
implementations.
In several cases of the existing C++ interfaces, differing
approaches had been used to create the C++ interface from the
Ada itself. Thus, any changes at the API level of those interfaces
would require modifications by the client application
programmers. To accommodate these existing libraries, whether
project- or language-specific, the binding tool approach was used
during generation and textual substitution was implemented where
possible to make such substitutions while manual editing was
performed where necessary.
Once complete API generation had occurred, this investment of
manual labor in editing (which included insertion of comments in
the generated code, since they were not propagated from the
original Ada and needed to be recast into the C++ paradigm)
made developers unwilling to regenerate their entire API. In
maintenance mode the generator, used in conjunction with a
differencing too, allows developers to manually verify the
matching of the Ada and C++ APIs.

4.2 HEADER FILES
For a small contrived example: (exceptions declared within a
package are not included in this example for brevity, nor are more
complicated data structures and interfaces). Note that we also are
not interested or required to know what the functions or
procedures are intended to accomplish – all implementation
details in the body of the package are irrelevant at this juncture.
--

-- foo.ads

--

package Foo is

 subtype Teen_Years is

 integer range 13 .. 19;

 procedure Proc (I : in out Teen_Years);

 procedure Proc (I : in out Integer;

 J : in out Integer);

 function Func (I, J : Integer)

 return Boolean;

end Foo;

Within the binding generator, the list of declarations is retrieved
from the visible declarations and iteratively processed:

declare

 My_Declarations :

 Asis.Declarative_Item_List :=

 Asis.Declarations.

 Visible_Part_Declarative_Items

 (My_Element);

begin

 for I in My_Declarations'Range loop

 Process_Element (My_Declarations (I));

 end loop;

end;

The resulting individual declarations are then processed according
to their kind:

procedure Process_Element

 (E : in Asis.Element) is

 D : Asis.Declaration_Kinds :=

 Asis.Elements.Declaration_Kind (E);

begin -- Process_Element

 case D is

 when Asis.Not_A_Declaration =>

 null;

 when Asis.A_Component_Declaration =>

 Process_A_Component_Declaration (E);

 when Asis.A_Constant_Declaration =>

 Process_A_Constant_Declaration (E);

 ...

 end case;

end;

Creating a header file:

#ifndef FOO_H

#define FOO_H

namespace foo {

typedef int teen_years;

const int teen_years_first = 13;

const int teen_years_last = 19;

void proc (teen_years & i);

void proc (integer & i,

 integer & j);

boolean func (integer i,);

} // end namespace foo

#endif // FOO_H

27

4.3 WRAPPER FILES
As mentioned earlier wrapper files were generated as child
packages to the existing Ada source code in order to encapsulate
the language boundary information and keep it separate from the
existing implementation. For each Ada package specification
(*.ads file), a corresponding wrapper child package in Ada (*-
wrap.ads and *-wrap.adb) and C++ (*-wrap.h and *-wrap.cpp)
were generated. This was accomplished in ASIS by walking the
visible declarations of the package, generating components of
each of the four wrapper files along the way.

My_Element : Asis.Element :=

 Asis.Elements.Unit_Declaration (My_Unit);

Declarative_Item_List :

 Asis.Declarative_Item_List :=

 Asis.Declarations.

 Visible_Part_Declarative_Items

 (My_Element);

...

for I in Declarative_Item_List'Range loop

 case Asis.Elements.Element_Kind

 (Declarative_Item_List (I)) is

 when Asis.A_Declaration =>

 case Asis.Elements.

 Declaration_Kind

 (Declarative_Item_List (I)) is

 when Asis.A_Function_Declaration |

 Asis.A_Procedure_Declaration =>

 ...

 end case;

 end case;

end loop;

4.3.1 Ada Wrapper

--

-- foo-wrap.ads

--

package Foo.Wrap is

 procedure Proc (I : in out Teen_Years;

 Except : out Integer);

 pragma export (“C”, Proc,

 “foo_wrap_proc”);

 procedure Proc (I : in out Integer;

 J : in out Integer;

 Except : out Integer);

 pragma export (“C”, Proc,

 “foo_wrap_proc_01”);

 procedure Func (I, J : Integer;

 Result : out Boolean;

 Except : out Integer);

 pragma export (“C”, Func,

 “foo_wrap_func”);

end Foo.Wrap;

--

-- foo-wrap.adb

--

package body Foo.Wrap is

 procedure Proc (I : in out Teen_Years;

 Except : out Integer) is

 begin

 Except := 0;

 Proc (I);

 exception

 when others =>

 Except := -1;

 end Proc;

 procedure Proc (I : in out Integer;

 J : in out Integer;

 Except : out Integer) is

 begin

 Except := 0;

 Proc (I, J);

 exception

 when others =>

 Except := -1;

 end Proc;

 procedure Func (I, J : Integer;

 Result : out Boolean;

 Except : out Integer) is

 begin

 Except := 0;

 Result := Func (I, J);

 exception

 when others =>

 Except := -1;

 end Func;

end Foo.Wrap;

28

4.3.2 C++ Wrapper

//

// foo-wrap.h

//

namespace foo {

namespace wrap {

extern “C” {

 void foo_wrap_proc (int i,

 int & except);

 void foo_wrap_proc_01 (int & i,

 int & j,

 int & except);

 void foo_wrap_func (int i,

 int j,

 boolean & result,

 int & except);

};

void proc (teen_years & i);

void proc (int i,

 int j);

boolean func (int i,

 boolean & result);

} // end namespace wrap

} // end namespace foo

//

// foo-wrap.cpp

//

namespace foo {

namespace wrap {

 void proc (teen_years i)

 {

 int except;

 //

 // Note range checking on C++ side

 // BEFORE the call to Ada

 //

 if ((i < teen_years_first)

 || (i > teen_years_last))

 {

 throw Constraint_Error_Equivalent;

 }

 foo_wrap_proc (i, except);

 if (i != 0)

 {

 throw Corresponding_Error;

 }

 }

 void proc (int i, int j)

 {

 int except;

 foo_wrap_proc_01 (i, j, except);

 if (except != 0)

 {

 throw Corresponding_Error;

 }

 }

 boolean func (int i, j)

 {

 int except;

 boolean result;

 foo_wrap_func (i, j, result, except);

 if (except != 0)

 {

 throw Corresponding_Error;

 }

 return result;

 }

} // end namespace wrap

} // end namespace foo

4.4 TOOLING AND SERIALIZATION
In order to achieve data object passing between systems, the
project utilized an existing set of utilities, collectively
implementing what was known as a “tooling” approach. These
utilities operated on the type definitions (either C++ or Ada) and
created corresponding definitions in the other language which
could then be inserted into files by the programmers. These types
can then be used with a Collection package that managed data
objects by the insertion of tag / value pairs into a serialized data
object and transferred to another system (in another address space
on the same computer or on another computer). An
implementation of this approach was also developed for this
project.

29

4.5 OTHER ISSUES
Generation of interfaces for packages with dependencies on other
packages was accomplished by processing those packages that
were included in context clauses (“with” clauses). A Clause_List
containing the clauses for a particular unit would be iterated and
interfaces for the corresponding packages also generated.

declare

 Clause_List : Asis.Context_Clause_List :=

 Asis.Elements.Context_Clause_Elements

 (My_Unit_Lists (I));

begin

 for Each_Clause in Clause_List'Range loop

 case Asis.Elements.Clause_Kind

 (Clause_List (Each_Clause)) is

 when Asis.A_With_Clause =>

 Process_Withs (

 Asis.Clauses.Clause_Names (

 Clause_List

 (Each_Clause)));

 when others =>

 null;

 end case;

 end loop;

end;

5. INTEGRATION INTO DEVELOPMENT
In order to run the tools and generate the bindings and associated
files, the code upon which the bindings depend must be compiled
first. Since the project uses a configuration management system,
in order to perform automated builds, the bindings must
themselves be generated and stored in the configuration
management system as well, so that they can be retrieved during
the build process, rather than generated and compiled during the
build process. Because of additional requirements on

documentation being placed within the delivered software, this is
not a problem, since some manual editing of the generated files is
allowed with this approach. Care must be taken when the base
software is updated to compare generated (and now commented /
edited) versions of the code.

6. SUMMARY
This paper has discussed the use of ASIS as a basis for a program
transformation tool to automate the generation of C++ bindings to
Ada packages. Issues associated with the language binding
process have been interspersed with examples of ASIS-related
code used to accomplish individual tasks.

7. ACKNOWLEDGMENTS
This work was performed under contract from the Federal
Aviation Administration, DTFA01-03-C-00015. The support and
review from Jeff O’Leary is especially noted and appreciated.

8. REFERENCES
[1] http://www.omg.org/gettingstarted/corbafaq.htm
[2] http://unicoi.kennesaw.edu/ase/ase02_02/tools/cbind/readme
[3] Emery, David E.; Mathis, Robert F.; and Nyberg, Karl A.

“Automating the Ada Binding Process for Java - How Far
Can We Go?’’ Reliable Software Technologies: Proceedings
of the Ada Europe 1998 conference, June 1998, Uppsala,
Sweden.

[4] Jesper Jørgensen, A Comparison of the Object-Oriented
Features of Ada 9X and C++, Proceedings of the 12th Ada-
Europe International Conference, p.125-141, June 14-18,
1993

[5] http://www.adahome.com/articles/1997-03/ada_vs_cpp.html
[6] http://www.adaic.com/whyada/ada-vs-c/ada-vs-c.html
[7] http://www.acm.org/sigada/wg/asiswg/ASIS_Background.ht

ml
[8] http://www.acm.org/sigada/wg/asiswg/intro.html
[9] http://www.acm.org/sigada/wg/asiswg/asiswg.html

30

