
k~ INVESTIGATION INTO THE COMPATABILITY OF ADA* AND

FORlvf..ALVERIFICATION 1'ECHNOLOGY

David Preston
lIT Research Institute

4550 Forbes Blvd., Suite 300
Lanham, MD 20706

Karl Nyberg
Grebyn Corporation

P. O. Box 1144
Vienna, VA 22180

Robert Mathis
9712 Ceralene Dr.
Fairfax, VA 22032

August, 1987

To be submitted to The 6th National Conference on Ada Technoloqy

Much of the research on this project was conducted under contract
to -the Rome Air Development Center (RADC), contract number
F30602-86-C0111.

*Ada is a registered trademark of the U. S. Government (Ada Joint
Program Office).



ABSTRACT

Formal code verification is the primary focus of this paper;
however, other approaches to raising the confidence in software
that may be applicable to the security community are
investigated.

Of primary interest in this study are two b&sic questions:

Is the construction of an automated Ada verification
environment within the grasp of today's technology?

If yes, what resources would be required to co::structthe
environment?

Initially, several COmpO!lents of the research were
identified. One area was to review each Ada construct as defined
by the Ada Language Reference Manual (LRM). This rev.iewis
centered on the impact of each construct on formal verification.
The perspective in this component is code verification for Ada
using traditional axiomatic verification. The assessment is
based on the feasibility to develop a verification axiom, or
proof rule, for each construct in isolation. A detailed listing
of the constructs and the effect of each on verification was
generated. Since Ada was not developed to be a verifiable
languagc; there ar~ some constructs that will defy formal
verification; these challenges do not seem to be overwhelming a:d
could presumably be controlled by restrictions to the use of t1:e
language. The Ada implementations of tasking and exception
handling are th~ two greatest challenges that the language
constructs provide for verification. Of these, tasking is the far
greater challenge.

In addition to the axioms, this study investigated the state
of the art of other support technologies required for code
verification. These include a formal definition and a
specification language. Specification lang~ages were viewed both
from the perspective of their necessity for formal code
verification and from the perspective of their applicability to
other techniques, both formal and less forma~, for increasing the
understanding of software.

The study addresses the issue of resources required to
construct an Ada verification environment by providing a brief
review of related efforts tha~ are ongoing and by projecting:
primarily by use of analogy, anticipated resources for
construction of an Ada verification environment.

The study went beyond traditional axiomatic code
verification by investigating alternative methods to increase the
understanding of what Ada software will, and will not, do. The
two alternatives studied are the verification techniques utilized



in the certification of software safety, notably the work of
Nancy Leveson, and the human verification of the IBM "cleanroom"
approach developed by Harlan Mills.

Also, research in application of formal methods to Ada
outside of the code verification domain was investigated. Two
specific areas are the application of formal methods to
specification analysis and to runtime assertions.

There are a few general conclusions that have been developed
during the course of this study:

Reasons not to use Ada at the Al certification level or
below are more culturally based than technically based.

Formality in software development should not be all or
nothing.

Analysis of constructs that challenge verification can be a
basis for developing coding restrictions on software that
does not need to be verified.

There are very few people who adequately understand the
application of formal methods.


