Adapting the Gypsy Verification System to Ada
Workshop on Formal Speclficatlon and Verificatlon of Ada
Institute for Defense Analysls
18-20 March 1985

John McHugh - Research Triangle Instlitute
Karl Nyberg - Verdlx Corporation

1. Introduction

DoD directive 5000.31 [DoD]| requires that new mlsslon critlcal computer programs

written for the department of defense be written In Ada' [Ada]. The statutory
definitlon of mlission critical (10 USC 2315) Includes security applicatlons specifically.
Computer security has been one of the principle driving forces for applled verlfication
work In recent years. These factors lead us to one of two concluslons: 1) The time Is
rapldly approachlng when 1t willl be necessary to apply verificatlon technlques to
programs written In Ada; or 2) DoD 5000.31 wlll have to be modlified to exclude secure
systems. Whlle there exlsts a well known antlpathy towards Ada within parts of both
the verificatlon and the computer securlty communltles, 1t 1s unllkely that the DoD
pollcy towards Ada will undergo substantlal change In the near future. If this Is the
case, 1t wlll be necessary to develop an Ada veriflcatlon capablllity In the near future.

There are several ways In which such a capablllty could be developed. A first optlon
would be to start from scratch, using any of the formal models of program speclﬁ-catlon
and verificatlon and bulld a system speclfically designed to verify Ada programs. A
second optlon Is to lgnore the Ada specific aspects of the problem entlrely. Under the
current certificatlon criteria of the DoDCSC, 1t Is not necessary to deal with the
Implementation language for a system In a formal manner, so It could be argued that
current systems are just as sultable (or unsultable) for Ada as for any other language.
In thls case, It Is only necessary to provide a convincing argument for the conformance
of the Ada lmplementat.lon' code to the verified formal top level specification of the
system In questlon. Flnally, 1t Is possible to adapt an exlsting verlflcation system to deal
with Ada.

The first approach 1Is possible, but would take an excesslve amount of time and
resources. Current verlfication systems represent investments of ten or more man years
each, expended over perlods of five to ten years. The second approach 1s representative
of the practice followed for the Honeywell SCOMP, a product currently approaching Al
certlficatlon by the DoDCSC. It appears that the requirement for a convincing
argument concernlng the equlvalence of the FTLS and the Implementation resulted In
an extremely complex and concrete FTLS and greatly Increased the verlfication effort.
Belng able to verlfy an Ada based FTLS for an Ada based !mplementatlon should

! Ada is a registered trademark of the Ada Joint Project Office.



obviate these difficulties. Addltlonally, there 1s substantlal Interest In systems which gq
beyond the Al criterla by requirlng code verificatlon for whlich second approach wouq[’d
not be viable. The third approach offers a chance to capture much of the Investmeny In
a current verlficatlon system while galnlng experlence with the verificatlon of Ada. w,
argue for such an approach, based on the Gypsy [Good78] system, suggesting that it wi|
lead to a prototype code verlficatlon system for Ada wlith minlmum (although not,
Insubstantlal by any means) effort. Taklng advantage of the Ada packaging mechanism,
we feel that verlfied packages can functlon within a larger Ada environment, makige
possible the Implementatlon of securlty kernels and the llke. ;

The remalnder of the paper dlscusses some of the problems assoclated with the
verificatlon of Ada, suggests ways In which these problems mlght be addressed, ang
indlcates ways In whlch the Gypsy system could be comblned with the front end of ap
Ada'compller and transformed Into a prototype system for the verification of Ada.

2. Trouble spots in Ada

Although one of the early design objectlves for Ada (In the days when 1t was stlll known
as DoD-1) was to facllitate proofs of program propertles, the committee nature of the
requlrements process resulted In a language whlch was requlred to carry a certaln
amount of the baggage of 1960s style programming languages. Among the potentlally
most troublesome of these are the presence of arbltrary control flow constructs l.e. the
"go to” statement, and unrestricted access to global varlables whleh, In addltlon to
complicating proofs about sequentlial programs, render concurrent programs lntractable
under many clrcumstances. Other features of the language Include the possibllity of
side effects from functlon Invocatlons, exceptlions durlng expression evaluation, and the
lack of an expllclt evaluatlon order for the operators of an expression. These factors,
comblned with the lack of a formal definltlon for the semantles of the language, have
lead some workers to despalr of verlfylng any aspect of the language. Indeed, It has
been noted that glven the proper Ada context, 1t may be lmpossible to prove anything 4
about the value of X after the executlon of so slmple a statement as

Xi=1;

We malntaln that the sltuation Is not qulte as grim as Indlcated above. Just because a
language contalns a particular feature does not mean that all programs written in the
language wlll contaln that feature. The adverse Interactlon among features of the
language, does not mean that all of them must be discarded, or that all occurrences of 2
feature In a glven program are Intractable. Although the word "subset” Is an anathema
to the Ada world, we feel that a useful set of Ada constructs and programming practices
can be deflned In such a way that reallstlc and functlonal programs can wrltten and i
verifled using them. Although the task Is substantlally more difficult, because of the |
extra complexity of the language, we feel that a theory of verlflable Ada can b€

developed 1n much the same way as Boyer and Moore developed thelr FORTRAN

o



[Boyer80] theory. Platek [Odyssey84] and hls colleagues at Odyssey Assoclates have
recently defined an Inltlal subset of Ada which they feel Is sultable for verlficatlon. One
feature which they rule out Is the exception mechanlsm. We feel that the Ada exceptlon
mechanism Is sufficlently llke the Gypsy mechanlsm so that 1ts verlficatlon Is tractable,
and we propose to Include exceptions in our system.

Ada as currently deflned has no specificatlon mechanlsm. Whlile 1t Is possible to use an
external speclificatlon mechanlsm, i.e. one 1n which the program and speclfication are
Jolned only during the verlficatlon process, we are more comfortable with an Internal
mechanlsm, simllar to that used Imn Gypsy. At the same time, we would llke our
veriflable code to be acceptable to a varlety of Ada translators. An extenslon of
Luckham's Anna notation [Luckham84] to accommodate exception returns from routines
appears to be the most promlsing mechanlsm avallable at the present tlme, although a
specificatlon language using the Ada PRAGMA construct cannot be ruled out.

3. A hybrid system

We propose to base our prototype Ada verlficatlon system on a comblnatlon composed
of an exlsting Ada compller and an existing verificatlon system. The Ada compller Is
the one developed and recently valldated by the Verdlx corporatlion of McLean, Virginla,
whlle the verlficatlon system Is the Gypsy Verlficatlon Environment, developed at the
Unlversity of Texas. There are several reasons for the cholce of such a hybrid system.
Ada Is a large language with a complex syntax and semantlcs. Uslng an existing front
end from a valldated compller ellmlnates much of the effort required to Implement a
front end for the verification system. It also provides a dlrect method for providing
executable verslons of the verifled programs, as well as facllitating systems which
contaln mixtures of verified and unverified programs. The use of a modified version of
the GVE as a back end for the Ada verlficatlon system offers slmllar advantages. We
feel that the Inltlal set of Ada constructs which can be verifled wlll be roughly
equlvalent In power and flavor to the Gypsy language. Previous efforts to model Ada
constructs In Gypsy [Akers83], and vice versa provide evidence for thls assumptlon.
Although Ada type rules are "stronger” than those for G'ypsy, 1t 1s possible to wrlte
Gypsy as though It were typed llke Ada. The Gypsy exceptlon mechanism, though
somewhat more tractable than the Ada exceptlon mechanlsm Is sultable for modeling
Ada. Most of the Ada operators are already present In Gypsy.

The proposed hybrid conslsts of three primary components, the Ada front end, the
intermedlate form translator, and the verilficatlon back end. Each of these are described
briefly In the sections which follow.

=]
w



4. The Ada front end

As noted above, the front end of the proposed system Is based on the parser ang
semantlc checker of an exlstlng, valldated, Ada compller. The parser and semantlc
checker will requlre some modlificatlons to accept Ada wlith embedded speclfications,
The output of the modifled front end wlll conslst of the compller's Interna)
representation of Ada programs, extended to Include the speclflcation constructs.
Assumling that a speclficatlon language such as Anna Is chosen, these modificatlons
should be relatlvely straight forward. The Internal representation will be captured at g
stage In the compllatlon process where name resolutlon has been performed and operator
overloadlng has been removed so as to slmplify subsequent operations.

5. The intermediate form translator

The Intermedlate form translator serves a dual purpose. Its primary function s to
convert the Ada compller’s representatlon of a program Into a representation which can
be entered Into the verlficatlon back end as though It were the output of the Gypsy
parser. Its secondary function Is to ensure that the code to be verified conforms to the
set of constructs acceptable to the verlflcatlon system, l.e. that the program to be
verifled Is In fact written In the verifiable Ada subset. Glven that both the Ada front
end and the Gypsy back end use Internal representations which are abstractlons of
preflx trees, the translatlon operatlon Is a stralghtforward, If complex, syntactic one.
The enforcement function, on the other hand, may Involve substantlal semantic
analysls. It Is hoped to slmplify both of these tasks by taking advantage of utllitles,
already present within the front end, for manlpulating the Internal form of Ada
programs.

6. The modified GVE

The output of the translatlon process wlll be_ a Gypsy-llke representation of the Ada
code to be verifled In a form sultable for loading Into the modifiled GVE. Once such an
Ada database has been restored Into the GVE, verlflcatlon condltlons can be generated
and proved In the same way these steps are performed for Gypsy programs In current
verslons of the system. To support Ada verificatlon, substantlal modlificatlons will be
required for a number of components of the GVE. The verificatlon condltlon generator
wlll requlre modificatlon to reflect the semantlic dlfferences between Ada and Gypsy
statements. In a slmllar fashlon, the expression slmplifier wlll also require modification
and extenslon. The preflx to Inflx converslon routlne, used to dlsplay Internal forms to
the user wlll be modified to use an Ada syntax. We hope*to take advantace of the
previous work on a Gypsy to Ada translator for much of this step. It Is hoped that nhe_
prover wlll requlre little or no modliflcation. Modlflcatlons to the top-level or user
Interface to the system should be restricted to the removal of unneeded functlonallty

Ty



e e ot .t ek

e sonenEr e

and system components such as the optlmlizer and code generators.

7. Summary and conclusions

We have proposed a prototype Ada verificatlon system based on a hybrld of an exlsting
compller and verificatlon system. Although such a system Is not capable of supporting
verificatlon of the entire Ada language, It 1s clalmed that It wlll support a language
comparable to those now belng verlfled and sultable for simllar programs. While the
construction of such a system Involves a substantial effort, we are confldent that the
effort Is much less than that Involved In bulldlng a verification system for Ada from
scratch. A hybrld system, such as we propose, wlll allow the verification communlty
and the growing applications communlty 1t supports to obtaln experlence wlith Ada
verificatlon In the near future. Such experlence wlll provide a sound basis for future
revislons of the language to support verlficatlon should thls prove necessary or desirable.

8. References

[Ada] - Ada Programming Language, ANSI/MIL-STD-1815A, Department of Defense, 22
January 1983.

[Akers83] - Akers, Robert L., A Gypsy-to-Ada Program Compiler, Technlcal Report 39,
Institute for Computing Sclence, The Unlversity of Texas at Austin, Austin, TX 78712
December 1983. -

[Boyer80] - Boyer, Robert S., Moore, J Strother, A Verification Condition Generator for
Fortran, Technlcal Report CSL-103, SRI International, June, 1980.

[DoD] - DeLauer, Rlchard D., "DoD Pollcy on Computer Programmlng Languages”,
Department of Defense Dlrective 5000.31, The Under Secretary of Defense, Washlngton,
DC, 20301, June 1983.

[Good78] - Good, Donald 1., Cohen, Richard M., Hoch, Charles G., Hunter, Lawrence
W., Hare, Dwight F., Report on the Language Gypsy, Version 2.0, Technlcal Report
ICSCA-CMP-10, Institute for Computing Sclence and Computer Appllcatlons, The
Unlverslty of Texas at Austln, Austin, TX 78712, September 1978.

[Luckham84] - Luckham, David C., von Henke, Frledrich W., Krleg-Brueckner, Bernd,
Owe, Olaf, Anna - A Language for Annotating Ada Programs, Preliminary Reference
Manual, Technlcal Report No. 84-261, Program Analysls and Verliflcatlon Group,
Computer Systems Laboratory, Stanford Unlverslty, Stanford, CA 94305, July 1984.

[Odyssey84] - Odyssey Research Assoclates, Inc. A Verifiable Subset of Ada, (Revised



Prellminary Report), Odyssey Research Assoclates, Inc., 713 Clifton St., Ithaca, Ny
14850, 14 September 1984.




