
Adapting the Gypsy Verification System to Ada
Workshop on Formal SpeCification and Verification of Ada

Institute for Defense AnalysiS
18-20 March 1985

John McHugh - Research Triangle Institute
Karl Nyberg - Verdlx Corporation

1. Introduction

DoD directive 5000.31 [DoD] requires that new mission critical computer programs

written for the department of defense be written In Ada 1 [Ada]. The statutory
definition of mission critical (10 USC 2315) Includes security appllcatlons speCifically.
Computer security has been one of the principle driVing forces for applled verification
work In recent years. These factors lead us to one of two conclusions: 1) The time Is
rapidly approaching when It wlll be necessary to apply verificatIon techniques to
programs written In Ada; or 2) DoD 5000.31 wlll have to be modified to exclude secure
systems. Whlle there exists a well known antipathy towards Ada within parts of both
the verification and the computer security communities, It Is unlikely that the DoD
pollcy towards Ada will undergo substantial change In the near future. If this Is the
case, It will be ne~essary to develop an Ada verification capablllty In the near future.

There are several ways In which such a capablllty could be developed. A firSt option
would be to start from scratch, using any of the formal models of program specification
and verification and bulld a system speCifically designed to verify Ada programs. A
second option Is to Ignore the Ada speCific aspects of the problem entirely. Under the
current certification criteria of the DoDCSC, It Is not necessary to deal with the
Implementation language for a system In a formal manner, so It could be argued that
current systems are Just as suitable (or unsuitable) for Ada as for any other language.
In this case, It Is only necessary to prOVide a convincing argument for the conformance
of the Ada Implementation code to the verified formal top level specification of the
system In question. Finally, It Is pOSSible to adapt an eXisting verification system to deal
with Ada.

The first approach Is possible, but would take an excessive amount of time and
resources. Current verification systems represent Investments of ten or more man years
each, expended over periods of five to ten years. The second approach Is representative
of the practice followed for the Honeywell SCO}AP, a product currently approaching Al
certification by the DoDCSC. It appears that the requirement for a convincing
argument concerning the equivalence of the FTLS and the Implementation resulted In
an extremely complex and concrete FTLS and greatly Increased the verification effort.
Being able to verify an Ada based FTLS for an Ada based Implementation should

I Ada is a registered trademark of the Ada Joint Project Office.

T-l



obviate these dlfi1cultles. Additionally, there Is substantial Interest In systems Which gO
beyond the Al criteria by requiring code verification for which second approach would
not be viable. The third approach offers a chance to capture much of the Investment In
a current verification system whlle gaining experience with the verification of Ada. 'vVe
argue for such an approach, based on the Gypsy [Good78] system, suggesting that It will
lead to a prototype code verification system for Ada with minimum (although not
Insubstantial by any means) effort. Taking advantage of the Ada packaging mechanism
we feel that verified packages can function within a larger Ada environment, makln:c
possible the Implementation of security kernels and the llke.

The remainder of the paper discusses some of the problems associated with the
verification of Ada, suggests ways In which these problems might be addressed. and
Indicates ways In which the Gypsy system could be combined with the front end of an
Ada compHer and transformed Into a prototype system for the verification of Ada.

2. Trouble spots in Ada

Although one of the early design objectives for Ada (In the days when It was st!ll known
as DoD-l) was to facllltate proofs of program properties, the committee nature of the
requirements process resulted In a language which was required to carry a certain
amount of the baggage of 1950s style programming languages. Among the potentially
most troublesome of these are the presence of arbitrary control flow constructs l.e. the
..go to" statement, and unrestricted access to global variables which, In addition to
compllcatlng proofs about sequential programs, render concurrent programs Intractable
under many circumstances. Other features of the language Include the posslbillty of
side effects from function Invocations, exceptions during expression evaluation. and the
lack of an expllclt evaluation order for the operators of an expression. These factors.
combined with the lack of a formal definition for the semantics of the language, have
lead some workers to despair of verifying any aspect of the language. Indeed, It has
been noted that given the proper Ada context, It may be Impossible to prove anything
about the value of X after the execution of so simple a statement as

X:= 1;

WB maintain that the situation Is not quite as grim as Indicated above. Just because a
language contains a particular feature does not mean that all programs written In the
language wlll contain that feature. The adverse Interaction among features of the
language, does not mean that all of them must be discarded, or that all occurrences of a
feature In a given program are Intractable. Although the word "subset" Is an anathema
to the Ada world, we feel that a useful set of Ada constructs and programming practices
can be defined In such a way that realistic and functlo.nal programs can written and
verified using them. Although the task Is substantially more dlfi1cult, because of the
extra complexity of the language, we feel that a theory of verifiable Ada can be
developed In much the same way as Boyer and Moore developed their FORTRAN

'T'-2



1
I,
j
J
!
1

1

1i
jii
t

Ii
j
J

[Boyer80] theory. Platek [Odyssey84] and his colleagues at Odyssey Associates have
recently defined an InitIal subset of Ada whIch they feel Is suItable for verificatIon. One
feature whIch they rule out Is the exceptIon mechanIsm. We feel that the Ada exception
mechanIsm Is sufficIently lIke the Gypsy mechanIsm so that Its verIficatIon Is tractable,
and we propose to Include exceptIons In our system.

Ada as currently defined has no specIficatIon mechanIsm. WhIle It Is possIble to use an
external specIficatIon mechanIsm, Le. one In whIch the program and specIficatIon are
JoIned only durIng the verIficatIon process, we are more comfortable wIth an Internal
mechanIsm, simllar to that used In Gypsy. At the same tIme, we would lIke our
verIfiable code to be acceptable to a varIety of Ada translators. An extensIon of
Luckham's Anna notatIon [Luckham84] to accommodate exceptIon returns from routInes
appears to be the most promIsIng mechanIsm avaIlable at the present tIme, although a
specIficatIon language usI~g the Ada PRAG1v1A construct cannot be ruled out.

3. A hybrid system

We propose to base our prototype Ada verIficatIon system on acorn bination composed
of an exIstIng Ada compIler and an exIstIng verIficatIon system. The Ada complIer Is
the one developed and recently valldated by the Verdix corporatIon of McLean, VIrgInIa,
whIle the verIficatIon system Is the Gypsy VerIficatIon Environment, developed at the
UnIversity of Texas. There are several reasons for the choIce of such a hybrId system.
Ada Is a large language wIth a complex syntax and semantIcs. UsIng an existIng front
end from a valldated compIler ellminates much of the effort requIred to Implement a
front end for the verIficatIon system. It also provides a dIrect method for provIdIng
executable versions of the verified programs, as well as facllltating systems whIch
contain mixtures of verIfied and unverIfied programs. The use of a modIfied versIon of
the GVE as a back end for the Ada verIficatIon system offers sImIlar advantages. We
feel that the InItial set of Ada constructs whIch can be verIfied wlll be roughly
equIvalent In power and fiavor to the Gypsy language. PrevIous efforts to model Ada
constructs In Gypsy [Akers83], and vIce versa prOVide evIdence for this assumptIon.

Although Ada type rules are "stronger" than those for G'ypsy, It Is possIble to wrIte
Gypsy as though It were typed llke Ada. The Gypsy exception mechanism, though

somewhat more tractable than the Ada exception mechanIsm Is sultabl~ for modellng
Ada. Most of the Ada operators are already present In Gypsy.

The proposed hybrId consists of three prImary components, the Ada front end, the
Intermediate form translator, and the verIficatIon back end. Each of these are descrIbed
briefly In the sectIons which follow.

T ·3



4. The Ada front end

A.s noted above, the front end of the proposed system Is based on the parser and
semantic checker of an existing, vall dated, Ada compller. The parser and semantic
checker wlIl require some modifications to accept Ada with embedded specifications.
The output of the modified front end will consist of the compller's Internal
representation of Ada programs, extended to Include the specification constructs.
Assuming that a specification language such as Anna Is chosen, these modifications
should be relatively straight forward. The Internal representation will be captured at a
stage In the compilation process where name resolution has been performed and operator
overloading has been removed so as to slmpllfy subsequent operations.

5. The inte~mediate form translator

The Intermediate form translator serves a dual purpose. Its primary function Is to
convert the Ada complIer's representation of a program Into a representation which can
be entered Into the verification back end as though It were the output of the Gypsy
parser. Its secondary function Is to ensure that the code to be verIfied conforms to the
set of constructs acceptable to the verification system, I.e. that the program to be
verified Is In fact written In the verifiable Ada subset. GIven that both the Ada front
end and the Gypsy back end use Internal representations which are abstractions of
prefix trees, the translation operation Is a straIghtforward, If complex, syntactic one.

The enforcement function, on the other hand, may Involve substantial semantic
analysIs. It Is hoped to sImpllfy both of these tasks by takIng advantage of utlIltles,
already present wIthin the front end, for manipulating the Internal form of Ada
programs.

6. The modified GVE

The output of the translation process wlll be a Gypsy-llke representation of the Ada
code to be verified In a form suitable for loadIng Into the modified GVE. Once such an
Ada database has been restored Into the GVE, verification conditions can be generated
and proved In the same way these steps are performed for Gypsy programs In current
versions of the system .. To support Ada verification, substantial modIfications wlll be
required for a number of components of the GVE. The verification condition generator
wlll require modIficatIon to refiect the semantic differences between Ada and GypSY
statements. In a similar fashion, the expression slmpllfier will also require modIfication
and extension. The prefix to Infix conversion routine, used to display Internal forms to
the user wlll be modified to use an Ada syntax. We hope'to take advantage of the

previous work on a Gypsy to Ada translator for much of this step. It Is hoped that the
prover will require llttle or no modification. Modifications to the top-level or user
Interface to the system should be restricted to the removal of unneeded functionality



and system components such as the optimizer and code generators.

7. Summary and conclusions

We have proposed a prototype Ada verification system based on a hybrId of an existIng
compller and verificatIon system. Although such a system Is not capable of supporting
verIficatIon of the entIre Ada language, It Is claImed that It wl1l support a language
comparable to those now beIng verified and suitable for sImllar programs. Whlle the
constructIon of such a system Involves a substantIal effort, we are confident that the
effort Is much less than that Involved In bulldlng a verIfication system for Ada from
scratch. A hybrid system, such as we propose, will allow the verIfication comm unIty
and the growIng appllcatlons communIty It supports to obtaIn experIence with Ada
verIficatIon In the near future .. Such experience will provide a sound basis for future
revisions of the language to support verIficatIon should thIs prove necessary or desIrable.

8. References

[Ada] - Ada Programming Language, ANSIjMIL-STD-1815A, Department of Defense, 22
January 1983.

[Al\:ers83] - Akers, Robert L., A Gypsy-to-Ada Program Compiler, TechnIcal Report 39,
InstItute for ComputIng ScIence, The UnIversIty of Texas at AustIn, AustIn, TX 78712,
December 1983.

[Boyer80] - Boyer, Robert S., Moore, J Strother, A Verification Condition Generator for
Fortran, TechnIcal Report CSL-103, SRI InternatIonal, June, 1980.

[DoD] - DeLauer, RIchard D., "DoD Polley on Computer ProgrammIng Languages",
Department of Defense DIrectIve 5000.31, The Under Secretary of Defense, WashIngton.
DC, 20301, June 1983.

[Good78] - Good, Donald 1., Cohen, RIchard M., Hoch, Charles G., Hunter, Lawrence
vV., Hare, DwIght F., Report on the Language Gypsy, Version 2.0, TechnIcal Report
ICSCA-c:rvlP-lO, InstItute for ComputIng ScIence and Computer Appllcatlons, The
UnIversIty of Texas at AustIn, AustIn, TX 78712, September 1978.

[Luckham84] - Luckham, David C., von Henke, FrIedrIch W., KrIeg-Brueckner, Bernd,
Owe, Olaf, Anna - A Language for Annotating Ada Programs, Preliminary Reference
;\;!anual, TechnIcal Report· No. 84-251, Program AnalysIs and VerIficatIon Group,
Computer Systems Laboratory, Stanford UnIversIty, Stanford, CA 94305, July 1984.

[Odyssey84] - Odyssey Research AssocIates, Inc. A Verifiable Subset of Ada, (ReVIsed

T-5



Preilminary Report), Odyssey Research AssocIates, Inc., 713 Cllfton St., Ithaca, NY
14850, 14 September 1984.

T-6


