OCR of Cryptographic Source Code

Karl Nyberg
Grebyn Corporation

P. O. Box 47
Sterling, VA 20167-0047

http://karl.nyberg.net
703-406-4161

What I’m Presenting

Pretty Good Privacy (PGP)
Optical Character Recognition

Cost / Benefit of Increased Scanning
Resolution

An Ada95 “application”

What I’m NOT Presenting

* New architectural approaches to software
development, model-based or otherwise

e Advances In pattern recognition

 Solutions to global warming, world hunger,
AIDS, voting Iin Florida, SARS or the

MidEast crises

Obligatory Disclaimer

e Companies mentioned In this presentation
are used only for representative purposes
and are not meant to imply an endorsement

 On the other hand, | do have financial
Investments in several of those
companies... ©

Outline

PGP

OCR

The Ada Application
Results

PGP Background

nat 1s PGP?
ny was the source code published?

nat was the result?

What i1s PGP?

e PGP - Pretty Good Privacy

« A Public Key Encryption program

e Written in 1991 by Phil Zimmerman and
released by various means over the years

Why was the source code
published? (from the FAQ)

Make the source code available
Encourage posts to other platforms

Remove doubts about the legal status of
PGP outside USA / Canada

Show how stupid the US Export
Regulations were

What was the solution?

* An exception in the law allowed for export
of printed matter: “A printed book or other
printed material setting forth encryption

source code Is not itself subject to the EAR
(see Sec 734.3(b)(2))”

 Lead to the development and publication of
“Tools for Publishing Source Code”

More about “Tools...”

Printed using fixed width OCR-B font

Special consideration for unprintable
characters (spaces, tabs, etc.) and for
dealing with line wrapping

Per-line CRC-16 checksums, with running
CRC-32 checksums

Per-page CRC-32 checksums
Included training pages

What happened?

e Grand Jury Investigation
 Book reconstruction

Grand Jury Investigation

 Interviewed PKZ, ViaCrypt and Austin
Code Works (1993)

 Eventually dropped (January 1996)

Book Reconstruction

Printed
Exported
Scanned
OCR’d
Corrected

OCR Background

 What is OCR?
 How does It work?
 How was it applied here?

What 1s OCR?

OCR - Optical Character Recognition
A subfield of Pattern Recognition
As some have said, “A printer in reverse”

Takes an image of a page of text and returns
the text

How does 1t work?

Image acquisition (a scanner)
Big array of bits (monochrome, grayscale, color)

“Pre-processing” (deskew, salt / pepper noise
removal, text / graphics separation, forms
removal, column separation, language
identification)

Component identification
Component classification
Output and “post-processing”

Image Acquisition

e Scanning on an HP ScanJet IICX at various
resolutions (200, 300, 400 DPI) in
monochrome with ADF into TIFF files

e Manual rescanning of skewed Images

Some Cost “Parameters”

Time / Space
e Scan times
— 200 DPI - 19 seconds
— 300 DPI - 28 seconds
— 400 DPI - 42 seconds
e Scan sizes
— 200 DPI — < % MB (469294 bytes)
— 300 DPI — 1 MB (1054047 bytes)
— 400 DPI - 1.7 MB (1872086 bytes)

Pre-processing

* No text / graphics separation or other pre-
processing required

e Skew eliminated by rescan

Component identification

o Estimated “noise” threshhold based upon
scanning resolution

o Component identification by connected
component analysis

e Components grouped by line segmentation
(based upon bounding boxes) and sub-
component merge

Sample components

** **x
EE *hkk
R R *Ahhkk
E R R = *
*
*
* * ** RCE R R R = *hxkk
* * Rk = *kkk*k
*kkkx Rk = *k*k*x *kkk*k
E *Ahkkk
EE EE
* * * kX * EE = =
* kX * * Kk x *Ahkkk
* k=
* * *hdkx
Rk e Rk e EaE k=
*hkkki*k Rk *khkkXk
* * *Ahkhk*k
*hkkkhk EE *Ahkkk *Kxk*k
*hkkkhk E R *khkkXx E R
R R S S o *khkkXx R
*
* *
* *
* *

** EaE k=

More Cost Parameters
Image Analysis

e Time to perform connected component
analysis and line segmentation:.
— 200 DPI - 6 seconds
— 300 DPI - 10 seconds
— 400 DPI - 17 seconds

Ada / Design Issues

e TIFF Parsing
e Data Representation and Storage

Component Classification

 Classification based upon feature extraction
(height, width, various moments, position
relative to baseline, number of “bits”, etc.)

e Limited field “validation” (CRC-16 line
checksums, page headers for example)

o Simple ASCII output of “best” candidate

Design Issue
Classification Approach

 \Various options considered
— Template (overlay and compare) Matching
— Neural networks

— Feature vectors
o Exemplar (best match) selection
« Average values
 Classification trees (for performance)

More Cost Parameters
Component Classification

 Time to perform classification (average)
— 200 DPI - 10 seconds
— 300 DPI - 12 seconds
— 400 DPI - 14 seconds

Training The System

 Avalilable training data included
o Automatically trained

Design Issue
Training Style

e Automatic v. Manual

— Required pin-for-pin accuracy with character
segmentation

— Doesn’t address component glyphs

e Compiled v. Flat File

— Extra step in “production” process — could be hidden
from the end user

— Performance improvement, approximately n % (classic
space-time tradeoff — increased executable size by y %)

Meta-application

Image data

Accuracy measurement
Line reconstruction
Performance

Sizing

Image Data

e Table of Pages

Platform-Independent
Source Code Volume 1

Volume Training Test
Tools for Publishing Source |10 85
Code via OCR

Pretty Good Privacy 5.5 6 446

Design Issue
Where do you keep all this data?

e Page structures

e Components and bounding boxes
 Line structures

e Feature data

* Interrelationships among the above
e Purpose of the data

Accuracy Measurement

e Character accuracy
— Feedback on ground truth (training data)
— By count required to match CRC
— Levenshtein metric (edit distance)

* Line accuracy — CRC16 checksum
e Page accuracy — CRC32 checksum

Ground Truth

« By resolution (training data)

— 200 dpi
e Tools - 99.918% (missed 43 out of 52941)
e Volume 1 -99.914% (missed 29 out of 33743)

— 300 dpi

e Tools - 99.989% (missed 7 out of 52941)

e Volume 1 - 99.985% (missed 5 out of 33738)
— 400 dpi

* Tools - 99.989% (missed 7 out of 52941)

e Volume 1 - 99.985% (missed 4 out of 33743)

|_Ine Reconstruction

Consider secondary and tertiary, etc. candidates
for reconstruction with CRC-16 checksum

Running CRC-32 on input stream for additional
reconstruction confirmation and page checking

CRC-16 checked by increasing the number of
candidates as a function of the relative scores and
deviations of the candidates

Terminate CRC-16 when CRC-32 fails

cd2ale sub
b e a xwh

6

c eak
zU6
cnd
aoR
0eG

Fatslo
Eslel:
Puza(_
[ezo!™
hofx| |
rXcz).
Iw?wc!

Example

Candidates

{ Qcleanup(); -print
(&CLasoab)!_ “Pclol
I 8[(seun#1(J .#F1xZ
t @1TouxwR!1l] -RI(uz
) Rt]jwweoP{}1 9n)sc
} $DcxossEli! ~h]je?
T 0o)nmauS|/) "Dn_af

STDERR @ ; -exit(l); }
S?ED#N G-_ “sclb)i(_)
2YO[NE Q!J .oz)ZI1j'J 1|
GFCCGP #=1 _a=(YD}! {
%toeQ# R:! -wsjT{!'1l] F
EISKSD B]| ~xe{f]]11]
alXKES S") "no<{I?j1 >

Example
Character Substitution

cd2ale sub Fatslao Qcleanup(); -print STDERR @ ; -exit(l);

cd2ale sub Fatalxn
cd2ale sub Fatalxn
cd2ale sub Fatala

Q[leanup(); -print STDERR
&cleanup(); -print STDERR
&Cleanup(); -print STDERR

-exit(l);
-exit(l);
-ex1t(l);

{
cd2ale sub Fatslo { Qcleanup(); -print STDERR @_; -exit(l);
cd2ale sub Fatslo { QCleanup(); -print STDERR @_; -exit(l);
cd2ale sub Fatslo { Qcleanup(); -print STDERR @_; -exit(l);
cd2ale sub Fatslo { QCleanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fatslo { Q[leanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fatslo { &cleanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fatslo { &Cleanup(); -print STDERR @_; -exit(l);
cd2ale sub Fatslo { &[leanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fatslo { Qcleanup(); -print STDERR @_; -exit(l);
cd2ale sub Fatslo { QCleanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fatslo { Q[leanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fatslo { &cleanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fatslo { &Cleanup(); -print STDERR @_; -exit(l);
cd2ale sub Fatslo { &[leanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fatelx { Qcleanup(); -print STDERR @_; -exit(l);
cd2ale sub Fateln { QCleanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fateln { Q[leanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fatelx { &cleanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fatelo { &Cleanup(); -print STDERR @_; -exit(l);
cd2ale sub Fatelo { &[leanup(); -print STDERR @ ; -exit(l);
cd2ale sub Fatalx { Qcleanup(); -print STDERR @_; -exit(l);
cd2ale sub Fatalx { QCleanup(); -print STDERR @ ; -exit(l);

{ @_;

{ @_;

{ @

A e e ey ey ey ey ey e e e e e e e e e e e e e g e el el L

Character changes required to
pass CRC

e Tools
— 200 DPI - 1510
— 300 DPI - 275
— 400 DPI - 126

e VVolume 1
— 200 DPI - 20794
— 300 DPI - 9941
— 400 DPI - 711

More Cost Parameters
Time to Incorporate CRC

 Calculate and test for CRC
— 200 DPI - 13.7 seconds (v. 10)
— 300 DPI - 13.5 seconds (v. 12)
— 400 DPI - 14.1 seconds (v. 14)

evenshtein Metric

“A measure of the similarity between two strings

Based upon the edit distance, or the number of
Insertions, deletions and substitutions required to
change one string into the other

Sometimes also called the “string-to-string
correlation problem”

Less sensitive to “inserted / deleted” characters
than character-by-character comparison

Levenshtein Metric (cont.)

o Example:
— “cat” -> “pat” has a distance of 1
— “cant” -> “pat” has a distance of 2
— “therefore” -> “pinafore” has a distance of 5
— “Xyzzyxy” -> “yzzyxxyx” has a distance of 3

Levenshtein Metric (cont.)

e Tools:

— 200 DPI - 1186 v 315 (with CRC updates)
— 300 DPI - 234v 67 (with CRC updates)
— 400 DPI - 181v 73 (with CRC updates)

e VVolume 1.
— 200 DPI - 7906 v 5908 (with CRC updates)

— 300 DPI - 4230 v 2990 (with CRC updates)
— 400 DPI - 643 v 313 (with CRC updates)

Line Accuracy

e 200 dpi

— Tools — 292, with CRC - 2285

— Volume 1 -903, with CRC - 9107
« 300 dpi

— Tools - 4634, with CRC - 5808

— Volume 1 - 4764, with CRC - 19711
o 400 dpi

— Tools - 5286, with CRC 5782

— Volume 1 - 17264, with CRC 27127

Page Accuracy

e 200 dpi

— Tools - 2%, with CRC -92%

— Volume 1 - 1.8%, with CRC 37%
e 300 dpi

— Tools - 66%, with CRC - 92%

— Volume 1 - 13%, with CRC - 70%
o 400 dpi

— Tools - 81%, with CRC - 93%

— Volume 1 -53%, with CRC - 91%

Performance

« Average single page recognition time
— 200 DPI - 19.1 seconds
— 300 DPI - 23.7 seconds
— 400 DPI - 30.9 seconds

* Includes image parsing, connected
component analysis, component merging,

line segmentation, feature extraction,
classification and CRC-assisted output

Sizing

About forty source files, including data
analysis tools.

About eight thousand lines (+34,000 when
generated feature tables are compiled in)

Twenty second compilation on 1.2GHz
Pentium 4, Red Hat 8.0 (35 with tables)

Hours of reading images, calculating
features, building feature vector tables, ...

Comparison with Export Effort

Scanning was similar (ADF, rescan)

OCR was MAC Omnipage

— Manual Training
— Omnipage-specific bias to the correction toolset

Correction - ¥2 to 4 hours manual effort per
100 pages, 7500 pages, about 150 hours

Total — two people, roughly 100 hours each

Comparison (cont.)

Discounting development effort, ...
Approximately 500 pages (v. 7500)

Manual correction of 12 pages (estimate
200 for all six volumes)

Would take roughly 4 hours manual effort
after scanning

Observations

e Ada - it’s not just for embedded systems ©

e Benefits of CRC and alternate character
considerations combination — great!

 Flat file format painfully slow — consider
the implications when going to plain XML

Future Plans

o Infrastructure for pattern recognition work,
like building decision trees, neural
networks, other pre- and post-processing
algorithms

e Other similar documents — DES Cracker

e Other languages, non-CRC documents (e.g.,
utilizing secondary candidates for spell-
checking)

