
OCR of Cryptographic Source Code

Karl Nyberg
Grebyn Corporation

P. O. Box 47
Sterling, VA 20167-0047

karl@nyberg.net
http://karl.nyberg.net

703-406-4161

What I’m Presenting

• Pretty Good Privacy (PGP)
• Optical Character Recognition
• Cost / Benefit of Increased Scanning

Resolution
• An Ada95 “application”

What I’m NOT Presenting

• New architectural approaches to software
development, model-based or otherwise

• Advances in pattern recognition
• Solutions to global warming, world hunger,

AIDS, voting in Florida, SARS or the
MidEast crises

Obligatory Disclaimer

• Companies mentioned in this presentation
are used only for representative purposes
and are not meant to imply an endorsement

• On the other hand, I do have financial
investments in several of those
companies…

Outline

• PGP
• OCR
• The Ada Application
• Results

PGP Background

• What is PGP?
• Why was the source code published?
• What was the result?

What is PGP?

• PGP - Pretty Good Privacy
• A Public Key Encryption program
• Written in 1991 by Phil Zimmerman and

released by various means over the years

Why was the source code
published? (from the FAQ)

• Make the source code available
• Encourage posts to other platforms
• Remove doubts about the legal status of

PGP outside USA / Canada
• Show how stupid the US Export

Regulations were

What was the solution?

• An exception in the law allowed for export
of printed matter: “A printed book or other
printed material setting forth encryption
source code is not itself subject to the EAR
(see Sec 734.3(b)(2))”

• Lead to the development and publication of
“Tools for Publishing Source Code”

More about “Tools…”

• Printed using fixed width OCR-B font
• Special consideration for unprintable

characters (spaces, tabs, etc.) and for
dealing with line wrapping

• Per-line CRC-16 checksums, with running
CRC-32 checksums

• Per-page CRC-32 checksums
• Included training pages

What happened?

• Grand Jury Investigation
• Book reconstruction

Grand Jury Investigation

• Interviewed PKZ, ViaCrypt and Austin
Code Works (1993)

• Eventually dropped (January 1996)

Book Reconstruction

• Printed
• Exported
• Scanned
• OCR’d
• Corrected

OCR Background

• What is OCR?
• How does it work?
• How was it applied here?

What is OCR?

• OCR – Optical Character Recognition
• A subfield of Pattern Recognition
• As some have said, “A printer in reverse”
• Takes an image of a page of text and returns

the text

How does it work?

• Image acquisition (a scanner)
• Big array of bits (monochrome, grayscale, color)
• “Pre-processing” (deskew, salt / pepper noise

removal, text / graphics separation, forms
removal, column separation, language
identification)

• Component identification
• Component classification
• Output and “post-processing”

Image Acquisition

• Scanning on an HP ScanJet IICX at various
resolutions (200, 300, 400 DPI) in
monochrome with ADF into TIFF files

• Manual rescanning of skewed images

Some Cost “Parameters”
Time / Space

• Scan times
– 200 DPI – 19 seconds
– 300 DPI – 28 seconds
– 400 DPI – 42 seconds

• Scan sizes
– 200 DPI – < ½ MB (469294 bytes)
– 300 DPI – 1 MB (1054047 bytes)
– 400 DPI – 1.7 MB (1872086 bytes)

Pre-processing

• No text / graphics separation or other pre-
processing required

• Skew eliminated by rescan

Component identification

• Estimated “noise” threshhold based upon
scanning resolution

• Component identification by connected
component analysis

• Components grouped by line segmentation
(based upon bounding boxes) and sub-
component merge

Sample components
** **
****** ****
******** *****
********* ****
**** **** *****

********** **** **** *****
************** **** **** *****
*************** ********* ****
**************** ********* *****
******* ****** ******* *****
***** ****** **** *****

***** *****
******* ****

************** *****
**************** *****
***************** *****
****************** *****

******* ****** ****
****** ****** *****
****** ******* *****
****** ******* ***** ****
****** ******** ***** ********
******************* ***** ********
****************** ***** **********
**************** ****** **** ****
******* **** ***** **** ****

***** **** *****
**** *********
**** ********
** ******

More Cost Parameters
Image Analysis

• Time to perform connected component
analysis and line segmentation:
– 200 DPI – 6 seconds
– 300 DPI – 10 seconds
– 400 DPI – 17 seconds

Ada / Design Issues

• TIFF Parsing
• Data Representation and Storage

Component Classification

• Classification based upon feature extraction
(height, width, various moments, position
relative to baseline, number of “bits”, etc.)

• Limited field “validation” (CRC-16 line
checksums, page headers for example)

• Simple ASCII output of “best” candidate

Design Issue
Classification Approach

• Various options considered
– Template (overlay and compare) Matching
– Neural networks
– Feature vectors

• Exemplar (best match) selection
• Average values
• Classification trees (for performance)

More Cost Parameters
Component Classification

• Time to perform classification (average)
– 200 DPI – 10 seconds
– 300 DPI – 12 seconds
– 400 DPI – 14 seconds

Training The System

• Available training data included
• Automatically trained

Design Issue
Training Style

• Automatic v. Manual
– Required pin-for-pin accuracy with character

segmentation
– Doesn’t address component glyphs

• Compiled v. Flat File
– Extra step in “production” process – could be hidden

from the end user
– Performance improvement, approximately n % (classic

space-time tradeoff – increased executable size by y %)

Meta-application

• Image data
• Accuracy measurement
• Line reconstruction
• Performance
• Sizing

Image Data

• Table of Pages

6

10
Training

85Tools for Publishing Source
Code via OCR

446Pretty Good Privacy 5.5
Platform-Independent
Source Code Volume 1

TestVolume

Design Issue
Where do you keep all this data?

• Page structures
• Components and bounding boxes
• Line structures
• Feature data
• Interrelationships among the above
• Purpose of the data

Accuracy Measurement

• Character accuracy
– Feedback on ground truth (training data)
– By count required to match CRC
– Levenshtein metric (edit distance)

• Line accuracy – CRC16 checksum
• Page accuracy – CRC32 checksum

Ground Truth

• By resolution (training data)
– 200 dpi

• Tools - 99.918% (missed 43 out of 52941)
• Volume 1 - 99.914% (missed 29 out of 33743)

– 300 dpi
• Tools - 99.989% (missed 7 out of 52941)
• Volume 1 - 99.985% (missed 5 out of 33738)

– 400 dpi
• Tools - 99.989% (missed 7 out of 52941)
• Volume 1 - 99.985% (missed 4 out of 33743)

Line Reconstruction

• Consider secondary and tertiary, etc. candidates
for reconstruction with CRC-16 checksum

• Running CRC-32 on input stream for additional
reconstruction confirmation and page checking

• CRC-16 checked by increasing the number of
candidates as a function of the relative scores and
deviations of the candidates

• Terminate CRC-16 when CRC-32 fails

Example
Candidates

cd2a1e sub Fatsl¤ { Qcleanup(); ·print STDERR @_; ·exit(1); }
b e a xwh EsIeL: (&CLasoaD)!_ `Pc1oI s?ED#N G-_ `sc1I)i(_)
6 c eak PuZa(_ I 8[(seun#l(J .#F!xZ 2YO[NE Q!J .oz)Zlj!J I

zU6 [ezo!" t @I!ouxwR!1| -R!(uz GfCCGP #=1 _a=(Y!)}! {
cnd hofx||) Rt|wweoP{}1 _9¤)sc %toeQ# R:! -wsjT{!1| f
aoR rxcz). } $DcxossEIi! ~h|je? EISkSD B|| ~xe{f|]i1]
oeG 1w?wc! f 0o)nmaUS|/) 'Dn_af a!XKES S') 'no<{I?ji >

Example
Character Substitution

cd2a1e sub Fatsl¤ { Qcleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { Qcleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { QCleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { Qcleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { QCleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { Q[leanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { &cleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { &Cleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { &[leanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { Qcleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { QCleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { Q[leanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { &cleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { &Cleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatsl¤ { &[leanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatel¤ { Qcleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatel¤ { QCleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatel¤ { Q[leanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatel¤ { &cleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatel¤ { &Cleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatel¤ { &[leanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatal¤ { Qcleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatal¤ { QCleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatal¤ { Q[leanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatal¤ { &cleanup(); ·print STDERR @_; ·exit(1); }
cd2a1e sub Fatal¤ { &Cleanup(); ·print STDERR @_; ·exit(1); }

Character changes required to
pass CRC

• Tools
– 200 DPI - 1510
– 300 DPI - 275
– 400 DPI - 126

• Volume 1
– 200 DPI - 20794
– 300 DPI - 9941
– 400 DPI – 711

More Cost Parameters
Time to Incorporate CRC

• Calculate and test for CRC
– 200 DPI – 13.7 seconds (v. 10)
– 300 DPI – 13.5 seconds (v. 12)
– 400 DPI – 14.1 seconds (v. 14)

Levenshtein Metric

• “A measure of the similarity between two strings”
• Based upon the edit distance, or the number of

insertions, deletions and substitutions required to
change one string into the other

• Sometimes also called the “string-to-string
correlation problem”

• Less sensitive to “inserted / deleted” characters
than character-by-character comparison

Levenshtein Metric (cont.)

• Example:
– “cat” -> “bat” has a distance of 1
– “cant” -> “bat” has a distance of 2
– “therefore” -> “pinafore” has a distance of 5
– “xyzzyxy” -> “yzzyxxyx” has a distance of 3

Levenshtein Metric (cont.)

• Tools:
– 200 DPI - 1186 v 315 (with CRC updates)
– 300 DPI - 234 v 67 (with CRC updates)
– 400 DPI - 181 v 73 (with CRC updates)

• Volume 1:
– 200 DPI - 7906 v 5908 (with CRC updates)
– 300 DPI - 4230 v 2990 (with CRC updates)
– 400 DPI - 643 v 313 (with CRC updates)

Line Accuracy

• 200 dpi
– Tools – 292, with CRC - 2285
– Volume 1 – 903, with CRC - 9107

• 300 dpi
– Tools – 4634, with CRC - 5808
– Volume 1 – 4764, with CRC - 19711

• 400 dpi
– Tools – 5286, with CRC 5782
– Volume 1 – 17264, with CRC 27127

Page Accuracy

• 200 dpi
– Tools - 2%, with CRC - 92%
– Volume 1 – 1.8%, with CRC 37%

• 300 dpi
– Tools - 66%, with CRC - 92%
– Volume 1 - 13%, with CRC - 70%

• 400 dpi
– Tools - 81%, with CRC - 93%
– Volume 1 - 53%, with CRC - 91%

Performance

• Average single page recognition time
– 200 DPI – 19.1 seconds
– 300 DPI – 23.7 seconds
– 400 DPI – 30.9 seconds

• Includes image parsing, connected
component analysis, component merging,
line segmentation, feature extraction,
classification and CRC-assisted output

Sizing

• About forty source files, including data
analysis tools.

• About eight thousand lines (+34,000 when
generated feature tables are compiled in)

• Twenty second compilation on 1.2GHz
Pentium 4, Red Hat 8.0 (35 with tables)

• Hours of reading images, calculating
features, building feature vector tables, …

Comparison with Export Effort

• Scanning was similar (ADF, rescan)
• OCR was MAC Omnipage

– Manual Training
– Omnipage-specific bias to the correction toolset

• Correction - ½ to 4 hours manual effort per
100 pages, 7500 pages, about 150 hours

• Total – two people, roughly 100 hours each

Comparison (cont.)

• Discounting development effort, …
• Approximately 500 pages (v. 7500)
• Manual correction of 12 pages (estimate

200 for all six volumes)
• Would take roughly 4 hours manual effort

after scanning

Observations

• Ada – it’s not just for embedded systems 
• Benefits of CRC and alternate character

considerations combination – great!
• Flat file format painfully slow – consider

the implications when going to plain XML

Future Plans

• Infrastructure for pattern recognition work,
like building decision trees, neural
networks, other pre- and post-processing
algorithms

• Other similar documents – DES Cracker
• Other languages, non-CRC documents (e.g.,

utilizing secondary candidates for spell-
checking)

